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SUMMARY

The following research paper proposes several mathematical

models which help us to clarify and understand Piaget's theory

of cognition on the concrete and formal operational stages.

Some modified lattice models were used for the concrete stage

and a combined Boolean Algebra and group theory model was

used for the formal stage. Both experiments cited in the

literature and demonstrations carried out by the researcher

were used to determine the appropriateness of the models.

With some reservations which are cited in the research, the

mathematical models were quite consonant with the cognitive

stages they were designed to describe.
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CHAPTER I

INTRODUCTION

THE PROBLEM:

The purpose of this research is to develop mathematical

models of the concrete and formal stages of cognition as found'

in Jean Piaget's theory of cognitive learning. The problem

is to determine whether Piaget's suggestions concerning a

mathematical approach to these two stages of his theory can

be amplified and developed into mathematical structures which

help to explain his psychological theory. This research will

attempt to make explicitly clear the mathematical bases of

Piaget's theory. It will, hopefully, make both the strengths

and weaknesses of the theory more amenable to investigation,

validation, and possible revision.

Sub-Problems:

1. To examine the mathematics used in Piaget's theory

in order to clarify it and determine its shortcomings, if any.

2. How can a modified lattice theory model be used to

characterize the concrete stage of Piaget's theory?

3. How can a combined group theory and Booleah algebra

theory model be used to characterize the formal stage of Piaget's

theory?

4. What are the psychological referents of the mathematical

models?

5. What theoretical consequences of these models can be

found to provide grounds for empirical testing of Piaget's

theory and the models of this research?
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HYPOTHESES:

The problems posed in this research lend themselves to

the following hypotheses:

1. A modified lattice theory model can be constri,pted

to help chalacterize the concrete stage of Piaget's theory of

cognition.

2. A combined group theory and Boolean illgebra model can

be constructed to help characterize the formal stage of Piaget's

theory of cognition.

3. Psychological referents of these models, which will

guide their development, can be determined.

4. Theoretical consequences of these models can be found

which provide ground8 for empirically testing Piaget's theory,

if hypotheses one and two are affirmed.

Related Literature:

During the past fifty years Jean Piaget has written

hundreds of books and articles which articulate an increasingly

detailed theory of the developmental nature of human intelligence.

The appendix of this research contains an analysis of his theory.

This research is concerned .with those aspects of this development

which lend themselves to mathematical analysis. An important

book in this regard is Piaget's Logic and Psychology. In it

can be found an overview of Piaget's theoretical studies based

on many years of.research. It is involved with a combined

mathematical and psychological analysis of the concrete and

formal stages of his theory of cognition. The mathematics is,

at times, unclear and not fully developed and one of the

purposes of this research is to correct such deficiencies.

9
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Inhelder and Piaget's The Growth of Logical Thinking from

Childhood to Adolescence (hereafter designated as GLT) contains

a host of ingenious experiments designed to probe specific

aspects of the concrete and formal stages. It presents empirical

verification of the general theory of cognition, using, among

others, experiments involving balls bouncing off billiard

walls to test the use of compensations and proportions. Some

of the empirical verifications for the mathematical models of

the present research are found in GLT.

Piaget, Inhelder, and Szeminska's The Child's Conception

of Geometry is a study of cognition in relation to geometric

phenomena. It involves experiments concerning conservation

of length, area, and volume. The section on volume conservation

is a classical paradigm of Piaget's theory where subtle

connections and differences between the concrete and formal

stages are developed.

Piaget's Six Psychological Studies can be considered as

a statement of.the first principles or the metaphysics of

Piaget's theory. Two complementary points of view seem to

underly his theory. The first is that of genetic psychology

which concerns itself primarily with the nature and origin of

the developing cognitive structures with which we understand

logical inter-relations. The second is that of genetic

epistemology which, originally from a philosophical viewpoint

which merges with psychology, inquires into the nature of

knowledge. Piaget's view is that what we know depends upon

what cognitive structures we have developed and that the

questions of epistemology must consider the nature, structure
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and development of our minds from.childhood into adult life.

His entire theory yields a structured, empirical view that all

knowledge can only be understood by relating it to prior stages

(Piaget's stages) of knowledge. Indispensably involved with

his theory are the ideas of reversibility, conservation and

equilibration. Their roles are manifested in all the essays

of the book. Reversibility refers to the ability to understand

the opposite of a given state of affairs. It might involve

the idea of the complement of a set, reversing the order of a

given relation or understanding what something is not.

Conservation refers to the grasping of an idea or structure

when it is manifested in different forms. An example of this

ia the grasping of the "less than" relation as it manifests

itself in study of numbers and as the subset idea in set theory.

A more complex example concerns the idea of balance as

manifested in solving weight balancing, light reflection in

a mirror, and ricochet problems. The solutions to these

problems involves a grasp of the symmetry and balance inherent

in each of them. EqUilibration refers to the stability of a

given cognitive stage. A stage is said to be in equilibrium

when the ideas associated with it or conserved in it remain

dynamically stable. At the concrete and formal stages

equilibrium is attained when the cognitive structures of these

stages are in accord with several mathematical structures

which will be defined in this research.

Flavell's The Developmental Psychology of Jean Piaget

presents a condensed version of Piaget's theory and research

up until 1963. It cites many of the experiments validating

11
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his theory and an analysis of the criticism of the theory.

Its focus is psychological with little eMphasis on the

philosophical and mathematical ramifications of Piaget's

thought. It is a useful book because it gathers together

much that has been said by and about Piaget.

Furth's Piaget and Knowledge is an introduction in depth

to psychological aspects of Piaget's theory. It focuses on

intelligence as a biological function and probes deeply into

Piaget's psychological theory. It does not deal very much

with the models or the philosophical aspects of Piaget's theory.

However, they become clarified indirectly by Furth's analysis.

DEFINITIONS:

The definitions of group and lattice are based on those

of Birkhoff & MacLane, A Survey of Modern Algebra, (New York,

MacMillan, 1965).

The word "logic" in this research is used in two ways.

Mathematically, it refers to the structures, operations, and

rules given by.mathematical logic. Psychologically, it refers

to reasoning which is structured, operational, and characterized

by reversibility. The latter interpretation is usually referred

to. (Flavell, 1963, pp 4, 68, 69, 253-255)

Group:

A collection of elements a,b,c,d,... together with a

binary operation, denoted by o, form a group if the following

axioms hold:

1) (Closure) - If a and b are any elements in the group

then a o b is an element of the group.

1 2
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2) (Associativity) - If a,b,c are any elements in the

group then (a o b) o c = a o (b o c).

3) (Identity) - There exists an unique elemert, i, in

the group such that, if a is an element, a o i = a.

4) (Inverse) - For any element, a, of the group there

exists an unique element, x, of the group, such that a o x = i.

An example of the group concept is the collection of even

positive and negative integers, defining o to be the binary

operation + (addition):

1) The sum of two even'integers is an even integer (closure)

2) If a,b,c are even, then a + (b + c) = (a + b) + c

(associativity).

3) The unique even number, 0, has the property that if

a is even, then a + 0 = a (identity).

4) For any even number, a, its negative, -a, is an unique

even number with the property that a 4, (-a) = 0 (inverse).

It is of interest to note that the even integers under

multiplication do not form a group because, in this case,

axioms 3 and 4 are violated.

Lattice:

A collection of elements with two binary operations,

denoted bye and 6 form a lattice if, whenever X,Y,Z are

any three elements, the following axioms hold:

1) (Closure) XOY and >COY are elements of the

collection.

2) (Idempotent) XOX = X

X(Dx = X

1 3
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3) (Commutative) X6)Y = Y0X

XOY = ye-DX

4) (Associative) X0 (YOZ) = (X0Y) GDZ

(YOZ) = ()CY) eN

5) (Absorption) X6D (X0Y) = X(2) (X0Y) = X

An illustration of a lattice is obtained in the following

example:

Consider the power set of E,2,325 (i.e., the collection

consisting of all the subsets which can be formed from the set

consisting of 1,2,3: @,2,3j , 1,225 £2,3 i f,33
, , 0.

The curlecue brackets denote the set of elements contained

within the brackets and 0 denotes the set which has no elements

the null set). If the members of the power set, the union

operation of sets, and the intersection1 operation of sets

are respectively defined as the elements of a lattice, as6D

and as0 , it is readily seen that the five lattice axioms

are satisfied:.

1) Both the union and intersection of any two sets of

the power set collection are sets of the collection, e.g.,

f1,33 GD = and i1,2,3 0 {225

and b_,2,3 and L23 are both in the collection.

1. 1) A set S is a subset of a set T if every element of S
is also an element of T. (i.e., S C T)

2) The union of two sets C and D, denoted by C U D, is
another set whose eiements consist of all elements in C
or D or both.

3) The intersection of two sets C and D, denoted by C D,
is another set whose elements are both in C and in D.

14
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2) What is in either X.-or X is the same as what is in X,

e.g., 11,23 0 {1,23 = 4,23

What is in common to both X and X is the same as what is in X,

f2,33 = 0,33

3) The commutative laws then state:

a) What is in set X or set Y is the same as what

is in set Y or set X, e.g.,

= .

b) What is in both set X and set Y is the same as

what is both in set Y and set X, e.g.,

{3,3i .0 , 23 = .

4) a) What is in either X or in Y or Z is the same

as what is in X or Y or in Z and

b) What is in X and in Y and Z is the same as what

is in X and Y and Z.

e.g. , a) (1,3i & ( e ) =

L7,2,33 and ( {1 ,3..3 0 23 ) 0 ,2 = jl,2,3 0

b) ( j2 ® ) =

. 0 and f-4' (.d ) 3 , = 0 0 L1,23 = 0

3i

5) a) What is in X and in X or Y is the same as what

is in X or in X and Y is the same as what is in X,

eD ( Cv 2,3J
) = 0-,2,325

and g ,2_3 ( ,2.,} 0 ,3.2j ) = o f3.3
{1,23

Thus, the power set of a given set, under the defined conditions,

-is a lattice.

An important property of a lattice is that it is partially

15
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ordered, if we define Y to mean that X, Y are elements

of a lattice which have the property that X0 Y = Y; that is,

the following laws, which constitute the definition of partial

ordering-, hold:

1) X 60 X (reflexive property of0 )

2) X Ecip Y and Y X implies X = Y (anti-symmetric

property of(f.) )

3) X(ij Y and Z implies XG) Z (transitive property

of -0- ).

The second law will be shown to have importance in Piaget's

theory.

An illustration of partial ordering can be found by again

considering tho power set of f1,2,33 .and interpreting X (DY

to mean every element of X is an element of Y. The properties

1,2,3 then hold for:

1) Every element of a set X is a member of X (X g) X)

e.g., A,23

2) If every element of X is an element of Y and vice

versa, then X = Y.

3) If every element of X is an element of Y and every

element of Y is one of Z then every element of X is an element

of Z

e.g., {1,4 and fq- , GD {,2,3j therefore

2

Mathematical Model:

In this paper, we regard a mathematical structure M to

be a mathematical model of a given state of affairs, S, if:

1) There is a one-to-one correspondence between the terms

16
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of M and the terms of S, and the terms of S are interpretations

of the terms of M; (i.e., meanings are assigned to the terms

of M).

2) The axioms of M (when interpreted in S) are true in

S, and M and S are isomorphic with respect to operations and

relations. This means that there is a one-to-one correspondence

between the elements of M and those of S, an operation, o, of

M and an operation o', of S or a relation, R, of M and a

relation, R', of S, such that if alb,(a o b) are elements of

M and a',b', (a o b)' their correspondents in S then (a o b)'

= a'o'b' and if a Rb (a is related to b in some given way)

then a'R',h' (a' is related to b' in the corresponding way).

A fundamental assumption made in using mathematical models

is: when the axioms of the model, M, are verified as being

true in S, then the interpretations in S of all theorems of

M are assumed to be true in S. In this research several

mathematical models will be presented and their possible

psychological referents will be determined; e.g., at a given

cognitive level an interpretation of a particular lattice

model will be given and an attempt will be made to justify

the assumption that the interpretation, S, satisfies the

axiomatic structure, M.

Specifically, if one considers the axiom ()b = b0a,

the psychological interpretation which considers a and b to

be sets of objects and 0 to be the union operation acting on

them satisfies the axiom on the concrete stage, since what is

in a or in b is the same as what is in b or in a for a child

on the concrete level of Piaget's theory (age 7 - 11).

17



The definition of'mathematical model given above is taken

in essence from Stoll Sets, Logic, and Axiomatic Theories,

p. 131 (Freeman & Co., 1961).

An example (another, simpler example will follow this one)

of a mathematical model is found by relating, M, the collection

of positive integers (with addition as the operation) to S,

the following collection of sets of obje.cts (with the operation

of union): fa.i , ib,cj , ..., i.e., sets of a

single object, two objects, three objects, etc., wherein no

object in one set is repeated in any other set (with U, the

union operation modified by the following convention: If X

and Y are in the collection and X / Y , then X U Y is that

member of the collection which has the same number of members

as X U Y, where U is the union operation on sets; if X = Y

then X U Y is that member of the collection which has twice

as many members as X).

A one-to-one correspondence between the set of positive

integers and this collection of sets is achieved by the

following:

1 corresponds tc fa3

2 corresponds to -lb, I

3 corresponds to (d,e,f3

That is, for all n, n'corresponds to the set with n objects

in it. In other words, n' is that member of S which contains

n objects.
".!

Now consider (n + m)', and n' U m'. n' is the set in the

collection with n members, m' is the set in the collection with

m members and (n + m) is the set in the collection with n + m

18
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members. Since n' and.m' are disjoint (have no members in

common) unless n = m, n' U m' is represented by the set with

n + m members; i.e., (n + m)' = n' U m'. If n = m then n' 11 m'

has 2n members; i.e., (n + m)' = n' U m'.

This is illustrated more clearly perhaps in the case where

n = 2 and m = 3.

2 corresponds to .119,c3

3 corresponds to @,e,fi

and (2 + 3)' = 5' equals Ek,l,m,n,o3 . Since 2' = 6,6 ,

3' = , and 2' 3' = Lb, 1r = .

Another exemplification of the idea of'a mathematical

model involves the possibilities of communication among four

people. We may consider the mathematical symbols P 1,
P
2'

P
3'

P4 as standing for the four people (i.e., there is a one-to-

one correspondence between Pl, P2, P3, P4 and the four people).

We will consider the -.Phrase, "can communicate with" to be

mathematically symbolized by C, and the words, "or" and "and"

to be symbolized by V and /1 respectively. x C y is then

the mathematical correspondent of the statement "x can communicate

with y". Statements concerning the four people and their

ability to communicate can then be correlated with a mathematical

statement in the mathematical structure involving Pl, P2, P3,

P4, C, 1/7, A (e.g., the first person can communicate with

the third and fourth person corresponds mathematically to

P1 C (p3 4 P4)'

Methodology:

Both psychological and mathematical sources were used in

this study. The psychological sources involve the underpinnings

1 9 ,
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of Piaget's theory and specific mathematical models which are

useful in his theory. The mathematical sources involve the

more general theory of mathematical models and structures as

well as works which develop Piaget's logical concerns.

An examination and a critique were made of the mathematics

that Piaget uses in developing his theory of the concrete and

formal stages of cognition. The main sources used in this

regard were Piaget's Logic and Psychology and Flavell's The

Developmental Psychology of Jean Piaget.

A modified lattice theory model is to be developed in

Chapter Three with a view to determining its efficacy in

explaining Piaget's theory on the concrete stage. In addition,

a model stemming from group theory and Boolean algebra theory

was used to fashion a structure to explain Piaget's theory of

the formal stage of cognition in Chapter Four. The mathematical

models were developed by relating known experimental results

(usually from Piaget's research) to the axioms of the

mathematical theory. The experiments thereby tended to suggest

the axioms which mathematically represent them. For example,

Piaget's experiment concerning a child's grasp of the concepts

of a given set and its complement (that set consisting of all

the elements not in the given set) led to the inclusion of

some axioms of a lattice which concern elements, their union,

intersection and complements. The elements making up these

models were related to their psychological referents found

in Piaget's theory of cognition. A number of theorems logically

derived from the mathematical models were used to suggest

2 0
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empirical tests of his theory.1 In sum, then, experimental

results of Piaget and others were used to validate the

mathematical models, and the latter were used to suggest further

experiments relevant to Piaget's theory.

Some of the literature which was studied to collect data

substantiating the mathematical models and the psychological

referents associated with them are:

1. Piaget, - Logic and Psychology

2. Flavell, - The Developmental Psychology of Jean Piaget

3. Inhelder and Piaget, The Growth of Logical Thinking

From Childhood to Adolescence

4. Piaget, Inhelder and Szeminska, - La Ge-omArie

Spontanee de l'enfant

Sources for the study of mathematical models and structures

were:

1. Birkhoff and MacLane, Modern Algebra

2. Robert R. Stoll, Sets, Logic, and Axiomatic Theories

In summation, then, the data abstracted from these and

other sources involved:

a) the development of mathematical models in relation

to Piaget's theory;

b) the psychological referents of the models as found

in the theory of Piaget and other researchers concerned

with cognitive learning;

c) theoretical consequences of these models with a view

1. Demonstrations were carried out by the researcher to suggest
the psychological validity of several of his extensions of
Piaget's models.

2 1
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to suggesting experiments that would test Piaget's

theory.



CHAPTER II

A CRITIQUE OF PIAGET'S MATHEMATICS

The mathematics used by Piaget in developing his

psychological theory of cognition can be divided into two parts.

One part involves the lattice-like structures he refers to when

describing the concrete operational stage. The other involves

the group and Boolean Algebra structures he refers to on the

formal operational stage (Piaget, 1957).

Piaget presents several lattice-like structures for the

concrete stage in his Logic and Psychology (Piaget, 1957,

pp. 26-28). They involve what he calls "elementary groupements"

and "multiplicative groupements". However, the first set of

"axioms" he presents for the "elementary groupements" or simple

classifications in a hierarchical structure is defined by what

he refers to as five operations [sic]

1) A + A' = B; B + B' = C; etc. (where A x A' = 0,

1B x B' = 0 etc.). [Composition]

2) -A-A' = -B; etc., from which A = B-A' and

A' = B-A. [Inversion]

3) A-A = 0 [Identity]

4) A + A = A from which A + B = B. [Tautology]

5) A + (A' + B') = (A + A') + B' but A + (A-A)

(A + 22) -A. [Associativity]

(Piaget, 1957 pp. 26-28)

1. The prime symbol denotes partial complementation. A', for
example is the (partial) complement of A with respect to
B. (i.e., what is in B but not in A).

23
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Five such statements are referred to mathematically as

axioms not operations. His reference to the term "operations"

is ambiguous and misleading. Moreover these five statements

are not all axioms in the usual sense found in mathematics.

The "-" operation is not clearly invoked; how are 7, x,

interrelated? If all Piaget means by A-B is the usual A

intersect B' found in set theory, then the second half of 5)

is irrelevant. In his analysis as well as this paper's (see

Chapter 3 of this thesis) the operation "x" is not always well

defined at this part of the concrete stage; therefore, its use

in 1) needs clarification.

The structure presented above is clearly not a group, nor

does Piaget claim it to be (Logic and Psychology, p. 27). Yet,

on p. 4 of Logic and Psychology, while writing of logical

relationships at all levels, including the concrete stage,

he asserts, "logical relationships...never appear as a simple

system of linguistic or symbolic expressions but always imply

a group of operations." His use of the term "group", therefore,

is unclear; it sometimes signifies the mathematical concept

and at other times it indicates a collection with some structure.

In Logic and Psychology (p. 28) he presents a "multiplicative

groupement" which he defines as follows:

1) Al x A2.= A1A2; Bl x B2 = A1A2 + A1A2' + A11A2 +

A11A21: etc. [Composition]

2) B1B2 : B2 = Bl (where :B2 means' eliminating B21).

[Inversion]

3) Bl : Bl = Z (where Z is the most general class of

the system obtained by eliminating the inclusion Bl)

[Identity]

21
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4) BiB2 x A1A2 = A1A2 [Tautology]

5) Associativity restricted by the operations of 4).

Presumably Bi = Al + Al' and B2 = A2 + A2' in this analysis.

He writes further, "Now it is the join...which is not

general..." The term "join" is not defined anywhere and

presumably means the same as set union. Also, it is not clear

in what sense "join" is not general.

Z could mean the empty set or the universal set according

to his terminology since B1:B1 means B1 less B1 which should

be the empty set; yet Z is called the most general class.

The "axioms," particularly axiom 5), are again ambiguous

as they are presented, even if one follows Piaget's use of

them very carefully. Chapter 3 of this thesis is devoted to

clarifying Piaget's mathematics for the concrete stage.

Piaget, in his Trait6 de Logique,and Flavell,in The

Developmental Psychology of Jean Piaget,indicate further

mathematical aspects of Piaget's theory on the concrete level

by analyzing logical multiplication of sets and relations in

the sections on "groupings" or "groupements". This involves

pairing of classes and relations in one-to-one and many-to-one

correspondences. Much of the mathematics that Piaget uses in

these "groupements" aS well as the pairino of classes and

relations are developed in Chapter 3 of this thesis. The

mathematics is based on sets of axioms which explain how most

of the "groupements" can be derived.

A major shortcoming of the mathematics of Piaget is cited

by Flavell when he writes that Piaget has not "indicated

clearly and unambiguously how each model component is translated
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isomorphically into a specific behavior component." (Flavell,

1962, p. 188). A partial verification of this view is obtained

in the analysis of the ambiguity of the two sets of axioms

cited earlier in this Chapter. The research presented later

in this thesis poses a partial solution to the problem of the

isomorphism between Piaget's mathematics and psychology.

Concerning the formal stage, Piaget refers to a "(complete)

lattice structure" in his mathematics explaining this stage

(Piaget, 1957, p. 32). However, inconsistently, he also refers

to the use of Boolean Algebra as an explanatory model for the

formal stage (Inhelder and-Piaget, 1958, p.'132). Nowhere is

it made clear precisely how either mathematical structure is

used in his theory nor is Piaget ever clear exactly what axioms

he assumes when he refers to a lattice or Boolean Algebra.

Charles Parsons has an interesting review of Inhelder and

Piaget's Growth of Logical Thinking wherein he poses several

important questions concerning Piaget's mathematics on the

formal stage (Parsons, 1960). Parsons develops a case concerning

the ambiguous use of propositions by Piaget. (Parsons, 1960,

pp. 75-77). A single propositional formula is sometimes used

by Piaget as a statement (i.e., it is either true or false)

and sometimes used by him as a propositional function (i.e.,

it is true for certain cases and false for others). For

example, Parsons writes in reference to the problem of the

causes of pendulum motion: "Thus on p. 76 [Pliget, Growth of

Logical Thinking] Piaget speaks of the subjects' verifying

the tautology q*x, which ...[states] that weight has no effect,

which is not logically necessary." (Ibid.) The use of the
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term "tautology" in Piaget's analysis is improper. Either

cjIkx is a tautology and is true in all possible cases or it is

not always true and is true always in the subject's experience.

The latter is actually true in Piaget's analysis.

Another problem that Parsons discusses is tLe relation

between Piaget's use of the four-group and logical thinking

'on the formal stage (Parsons, 1960, pp. 81, 82). (For an

analysis of the four-group see the section in this thesis on

the formal stage.) Parsons questions why the four-group is

most appropriate to explain the reasoning involved in logical

analysis when other structures might also dip so. He cites an

article by P. R. Halmos concerning such structures (P. R.

Halmos, "The Basic Concepts of Algebraic Logic", Am. Math.

Monthly, 1956, 63, pp. 363-387). If the four-group does

indicate the structure of logical reasoning, how does one

distinguish between different kinds of logical problem solving?

For example, how can one then distinguish between the kind of

thinking involved when a child solves a Piagetian type problem

such as "the equality of angles of incidence and reflection"

(Inhelder and Piaget, 1958, pp. 3-19), and the kind of thinking

that a mathematician does when he solves a problem in group

theory. The research presented in this thesis suggests that

the latter form of reasoning may represent cognition on a

different tage from the former. Perhaps other mathematical

structures must be developed to characterize the reasoning of

mathematicians. There is no evidence that Piaget has considered

this problem.
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Although this problem concerning additional structures

to explain complex logical reasoning beyond Piaget's formal

stage is NOT WITHIN the scope of this paper, the following

speculations could be of interest. The mathematical structures

have, from a temporal view, a static quality. The mathematical

analysis of what is understood by an individual at a given

stage is not presented as a function of time, although time,

in some sense, is implicitly understood to be related to the

development of cognition. Apostel (Apostel, 1966) criticizes

this "shortcoming" of Piaget's theory and surmests an

alternative approach dealing with cognitive.structures as

functions of time. A. N. Prior (Prior, 1962) promulgates a

logical structure whose elements involve variations in time.

Prior's structure is purely logical and apparently completely

unrelated to Piaget's work in its inspiration. It appears to

lend itself to a Piagetian type analysis and could form the

basis of a mathematical structure which might solve the "static"

problem and point to structures beyond the formal stage.

Parsons (Parson, 1960) raises a question about piaget's

use of "relations". Piaget deals with simple relations as

belonging to the concrete stage. However, complex mathematical

relations clearly are not understood at this stage. Piaget,

although he has not explicitly clarified this point, probably

is referring to simple, more restricted kinds of relations.

This, of course, leaves open the question of when more complex

relations are understood. This understanding probably occurs

on the formal stage.
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A final point which merits some discussion is the function

of logic in Piaget's theory. He states (Piaget, 1957, p. 23)

that he uses logic as an operational algebra or as a useful

tool for understanding cognitive processes. Axiomatic logic

(as used by logicians) he regards as not particularly useful

for grasping cognitive structures, for human cognition is not

completely logical or formalizable. He thereby makes a

distinction between the work done by logicians and the more

informal logical analysis done in the "every-day" world. Again

the question of how logicians reason is not referred to by

Piaget.
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CHAPTER III

MODELS FOR THE CONCRETE STAGE

Two underlying ideas which motivate the present research

and which were used to suggest the mathematical models which

will be presented may be stated as follows: in order to

understand the structures underlying children's (and adult's)

logical thinking one must be sensitive to:

1. Not only what the individual can do but also what

he cannot do,

2. Whether the individual can cancel or negate mental

or physical operations while mentally retaining the

original operations or mentally performing the reverse

operations.

Research manifesting this point of view may be found in

Piaget's bead experiment (Piaget, 1957, p. 4) which involves

children at or befOre the concrete stage (approximate age 7-11).

When they are shown twenty wooden beads, most of which are brown

and a few of which are white, the question "are there more

wooden beads than brown beads?" is negatively answered by the

pre-concrete child and affirmatively by the concrete child.

The former tends to relate the number of brown beads to the

number of white and loses the idea of the totality of the

wooden beads. H& can compose the total (i.e., form the total

from its constitutent parts) but cannot decompose it into its

constituent parts (brown and white beads) and still retain the

original totality of wooden beads, while the concrete child

can perform both operations.
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For the purpose of developing the mathematical structures

which can be associated with Piaget's theory the following

conceptual.age categories are of interest:

Stage three (concrete stage) and

Stage four (formal reasoning stage)

The first two stages of Piaget's theory, stage one

(sensory-motor stage) and stage two (pre-operational stage)

together with stages three and four are described in the

appendix and in the literature (Flavell, 1963, pp. 86, 87,

264-266).

Stage three is exemplified by the development of concrete

structural reasoning. The child (about age 7-11) develops

capability of class inclusion and exclusion and seriation,

counting and nullifying counting (i.e., operating on a class

basis, conserving set concepts while being able to operate

reversibly). Prior to this stage, we have the preoperational

child who can only think of one idea at a time (Maier, 1965,

p. 116). There tends to be little or no operations among ideas

at this time. Before the second, pre-operational stage there

is stage one, the sensory-motor stage (age 0-2) , which also

exhibits a dearth of operations on and among ideas and is even

less structured than stage two. The structures being developed

during stages one and two contributes importantly to those of

the later stages. The early stages exhibit, incipiently,

aspects of stages three and four; a crucial difference lies

in the ability to operate reversibly at the latter stages, but

not during stages one and two. The child, early in stage three,

exhibits the fundamental operation of reversibility in relation
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to class and number concepts. A mathematical model of this

state of affairs can be found in what will be called a K-lattice.

The mathematics developed by Piaget in his writings wat used

to help suggest the mathematical structures put forth throughout

th::_s research (Piaget, 1949 and Piaget, 1957). A collection

of elements together with two binary operations denoted by V

and 4 form a K-lattice if, whenever x, y, and z are any three

elements, the following axioms hold:

1. x V y is in the collection (closure)

(x 4 y is not always, but sometimes is, meaningful)

2. x V (y V z) = (x V y) vz (associativity of V and of VI )

x/1 (y A z) = (x 4 y) A z (whenever both sides are

meaningful)

3. There an element, 0, such that for all x,

x V 0 = x (identity of V )

4. For each x, x 0, there exists a unique x' in the

collection such that x x' = 0 (partial complement)

5. x v y.= y V x (commutativity of L/ and of/1 )

x y = y./1 x (whenever both sides are meaningful)

6. x V x = x (idempotent)

DISCUSSION OF THE MODEL

If we define xey to mean xvy = y then axiom 6 signifies

that x0x. The symbol is abstract but derives intuitively

from the subset relation among sets and the less than or equal

to relation among numbers. For example, ley can, in a

3 2



-26-

particular interpretation, be understood as saying that set x

is included in set y. It is to be noted that this is a

mathematical model for the psychological operations of simple

classification of classes A,B,C,D..., A',B',C'...and their

unions where A6-.)3(4 CD.. . and A A' = B, BVB' = C, C VC' = D

etc., AlA' = 0, B/1B' = O....

The term hierarchical structure can be clarified by the following

diagram:

In the diagram, A' is the complement of A in B, B' is the

complement of B in C etc. and AileBgC etc. A,B,C, etc. are

increasingly broad categories. For example, A could be the

set of all red crayons, B the set of all crayons, C the set

of writing implements. A' would then be the set of all non-red

crayons.

The K-lattice is neither a group nor a lattice, yet it

exhibits some of the properties of each. It corresponds to

some of the structures called groupings in Piaget's writings

(Piaget, 1957, p. 26). On a psychological level is incipiently

suggests the logical structures which appear in full bloom on

the formal cognitive level.

The following principle will now be used to provide a

means of empirically investigating the afore-mentioned model

as well as all other models which will be presented in this
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research:

Whatever theorem is derivable from a given mathematical

model is a formal characteristic of an actualizable thought

process of an individual whose cognitive capabilities are

represented by the model. In other words, the theorems of

our model characterize the cognition of the stage.

This can be applied to our present model in the following

way, and thereby provide an understanding of the psychological

referents in the mathematical model:

Axiom I says that any two classes in a hierarchical

arrangement can be composed mentally into a'third class of

the arrangement by the union operation, but the intersection

of two classes does not always make sense (e.g., A/1A' = 0

= B/1 B' etc. is understood early in stage three but A (I (A' V B.)

is not necessarily understood then. (See page 29, paragraph 1.)

Axiom 2 - Associativity - The union of elements of a

class structure is independent of the way they are grouped

(similarly for.intersection when it is meaningful).

Axiom 3 - There exists at the concrete stage the ability

in the child to conceive of an empty class which, under union,

does not affect any other class.

Axiom 4 - Partial complement - For any class one can

conceive of its relative complement. That is, one can conceive

of what it is not.

Axiom 5 - Commutativity - One can combine pairs of classes

regardless of order whenever it is meaningful.

Axiom 6 - This specifies that no class can extend itself

by itself.
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A useful consequence of xVx = x is the following theorem:

If xl/ x; = y then xVy = y (i.e., xgly).

Proof: x Vy = xv(x vx') = (x'"x) v'x' = xv'x' = y

Therefore, x Vy = y. (For this proof axioms two and six were

used.)

A psychological interpretation of this theorem is that

when one understands that a given sub-class and its complement

make up a larger class, at the same time one grasps the notion

that the sub-class is smaller than the larger class. A

compelling experimental validation of this result on the

concrete stage is given by Piaget (Logic and Psychology, p. 4)

in the bead experiement: children are asked to determine from

a box of 20 10,)oden beads (class y) most of which are brown

'lass x) and some of which are white (class x') (therefore

Vx' = y) wh-,thex there are more brown beads than wooden beads

(is y?). Prior to the concrete stage the child answers

cOly because there is more x than x' (he does not pxhibit the

properties that the model indicates and is not yet at the

concrete stage); at the concrete stage the child says that

x0y and thereby acts in accordance with the model.

The sliggestion then is that the pre-concrete individual

has not yet conserved the idea of "class" while the concrete

level individual has developed a structured whole concept of

"class" and understands what a given class is and what it is

not -- he has achieved reversibility.

The above can be rendered in a more Piagetian style by

defining x' - y-x whenever xVx' = y. The minus sign refers

to the operation of inversion and the reversibility indicated
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by the above theorem takes the form of class inversion (in

contrast to the reciprocation form of reversibility which will

be discussed later) . Inversion and reciprocation are two forms

of reversibility. Inversion refers to the operation of direct

elimination; e.g. , if a weight is added to the left side of

a balanced scale, removal of the added weight to achieve balance

constitutes an inversion operation. Reciprocation creates the

same effect as inversion. However, it nullifies the previous

action Liirough indirect means: e.g. , in the previous example

concerning the scale, adding an equal weight placed at an equal

distance from the fulcrum on the right side of the balance will

also achieve balance and constitutes reciprocation. In particular,

one sees the use of inversion in completely negating a class

in the equation 0 = x -x since xV o = x.

The existence of a unique complement suggests the following

problem: if x Vx' = y, with x A x' = 0, then yVy' = z (with

y4 y' = 0) yields (x Vx') V y' = z = x v (x' V y'). A formal,

logical class .analysis would yield x (x' V = 0 , but our

restrictive model does not allow the existence of another

partial complement. Therefore, in accord with axiom four, this

is an instance in which A is undefined. Namely, for the pair

x and x' y' . The psychological translation of this problem

is: if a concrete level child is presented with a hierarchy

of classes x@yepz, with x V x' = y, yv y' = z, xA x' = 0,

y4 y' = 0 can he conceive of x as having two distinct partial

complements, x' with respect to y and x' V y' with respect to

z? Clearly the K-lattice model predicts one and only one class

is conceivable as a partial complement. An experimental
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generalization of Piaget's bead experiment may be useful in

resolving the problem and will be presented in chapter five.

Another interesting consequence of the model is Piaget's

fifth grouping, asymmetric relations (i.e., the building up

of things into transitive, ordered sequences) (Piaget, 1949,

p. 141). Mathematically speaking, we can establish that if

x0y and yOz then x(-1:)z (transitivity) and if x(12y and yOx

then x = y (asymmetry). The symbol& can be thought of as

indicating the subset relation or, more abstractly, any other

relation which satisfies the properties of transitivity and

asymmetry. (e.g., as light as, as long as, 'as valuable as,

etc.)

The model then gives the mathematical result

Xgy and_yez = xpz

Proof: xg)y means xVy = y

)(6) means y t=z = z

Therefore, since xVz = xV (y vz) and (x Vy) v z = y V'z = z

(using associativity of V ) we have x6Pz.

We also derive that if NL:57'y and 17k then x = y

Proof: xE-7-)y means xt/y = y

means yVx = x

Therefore, using commutativity, we have x = y.

Flavell cites general studies of Piaget which indicate

that concrete level children do exhibit those properties of

the model which are exemplified below, and pre-concrete children

tend not to.

In one study...the child is given a series of ten
sticks varying in length from A (shortest) to J
(longest) and is asked to seriate them. When this
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is done, he is given 9 more sticks (a to i) and
asked to insert them in their proper places in the
A-J series; the correct seriation would then give
Aa Bb Cc...iJ. Whereas the young children of ten
fail to make a complete construction of even the
initial series A-J, the older ones readily solve
both problems...

A second series of studies is more specifically
concerned with the transitivity property of
asymmetrical series. The child is given three or
more objects of perceptually different weight and
asked to seriate them by weight, with the restriction
that he may compare only two objects at a time. The
younger child does two things of interest there.
First, for a set of three objects, a.=-134:-.c, he is
often willing to form a complete series (either
correct or incorrect) on the basis of establishing

and a<c above. And conversely, he is often
unsure (and feels the need for empirical verification)
that ae:.-c is guaranteed from knowing a< b and b< c.1
(Flavell, 1963, p. 193)

The second study clearly indic tes the operation of the

transitive law at the concrete stage. The first study, involving

the sticks, indicates that both the direct ( and the reverse

relation must be grasped to solve this essentially concrete

level problem. The fitting of objects into the series requires

the operation of reversibility. In this case this means that

one can function withe and C>-) at the same time. However,

there is no exact analogue to the asymmetry property (if

and then x = y) in either of these studies. An experiment

which could give psychological substance to the asymmetry

property is as follows:

Consider two distinct collections of objects a and b.

Let a consist of several white beads and several black beads;

let b consist of exactly the same distribution of beads. Let

1. in the 7&search is essentially equivalent to z= as used
by Flav1J,
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the child choose one bead at a time from set a and have the

child, without looking inside b, draw a bead from b, by trial

and error, which is the same as the one he chose from a. Place

both beads elsewhere and continue until the beads of a are used

up. Then repeat the operation with set b taking the place of

a. In this manner the child experiences ab and bea. The

mathematical model predicts that the concrete level child should

and the pre-concrete level child should not observe that a = b.

See Chapter Five for a demonstration testing this assertion.

The model, thus far, has exhibited the operations of

inversion for classes and reciprocity (which is expressed in

the theorem on asymmetry) for relations. It is interesting

that the mathematics concerning inversion and set complementarity

provides no link with reciprocity and relation (the theorems

on transitivity and asymmetry make no use of the former two.)

However, by introducing the absorption axiom [x 1(xkly) = x

and x (x4 y) = x] of the full lattice on Piaget's formal

stage, one can exhibit linkage between the two kinds of

reversibility represented by inversion and reciprocity. (See

below, p. 52) In the words of Piaget, "At the level of concrete

operations, they (inversion and reciprocity) appear in the form

of two distinct operational structures..., and finally form

a unique system at the level of propositional operations (formal

stage)." (Piaget, 1957, p. 29) The present model indicates

that inversion and reciprocity are not intellectually linked

in the concrete level individual and the later mathematical

model to be developed for the formal stage predicts the
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intellectual linkage of these two at the formal stage, quite

in accordance with Piaget's statement.

The concept of vicariance is discussed in Piaget's Trait

de Logique (pp. 113-117) and in Flavell (1963, p. 176 and P. 192).

There are two aspects of this concept which are relevant to

this research. The first aspect postulates that if A,VAII = B

where A,4 A:, = 0 then there usually is at least one other

(substitute) pair A2 and A
2

' such that A 2VA
2

= B and

A24 A2' = 0. This is a formal statement of the fact that

concrete level children can usually classify the subsets of

a given collection of things in several different ways. The

second aspect yields a problem: if, in the above, Al

then A3A1', which is a concrete level result of Piaget.

However, neither our K-lattice model nor the next model to

be presented, the P-lattice (both of which develop the concrete

stage theory) nor Piaget's analysis of vicariance on the concrete

stage substantiates this theorem, which can easily be derived

from the model.which will be developed in this research for the

formal stage. In addition, Flavell suggests that this property

is attained at the formal stage (Flavell, 1963, p. 192).

An experiment which could suggest whether the second

property of vicariance is attained at the formal stage or

earlier is as follows:

Consider a collection of 5 small (A1) and 20 large (A1

objects. Let the 5 small ones and 3 large ones be colored

black (A2') and let all the rest be colored red (A2). Tell

this information to the child and ask him to mentally determine

the relative number of red objects and large objects.
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(A1 V A1 ' = A2 V A2 ' and A1A2 ' therefore 1117:)A1 ' should

logically follow.)

The K-lattice model, as has been shown, is particularly

relevant to hierarchical, class, and simple relational structures

on the concrete level of cognition. It serves as a model, then,

for the first and fifth groupings in Piaget's analysis of the

concrete stage (Flavell, 1963, pp. 173-195 and Piaget, 1949,

pp. 109-187) . The simplicity of this model in relation to what

will now be presented suggests that the structures predicted

by it are attained earlier in the concrete stage than those

structures which will be considered now.

The next model to be presented involves deeper probing

into the class and relational structures of the concrete stage.

The first model (the K-lattice) does not allow for a full

development of multiplication of classes and relations and the

balancing properties involved in .handling two or more

characteristics of objects at the same time.

The structxire which, follows will largely subsume the

K-lattice structure (exceptions involve properties of closure

of 4 and complementaticn) . A collection of elements together

with two binary operations denoted by V and 4 form a

P-lattice if, whenever x, y and z are any three elements of

the collection the following axioms hold:

1) x 1," y is in the collection
x 4 y is in the collection CLOSURE of V and 4

2) x V(y vz) = (x Vy) Vz
x4 (y ../z) = (x ly) //z ASSOCIATIVITY of V and 4

3) x 4 (y V z) = (x 4 y) v (x 1 z) DISTRIBUTIVITY of 4 with
respect to ki
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4) xVy = yvx
x y = y x COMMUTATIVITY of V and 77

5) There exist an unique element, 0, such that for all x

x VO = x IDENTITY of V

6) There exists an element, I, such that for all x

x VI = I (I X 0) UNIVERSAL ELEMENT

7) For any x, there exists an unique x' such that

x Vx' = I and xA x' = 0 COMPLEMENT

8) xV x = x
x4 x = x IDEMPOTENT

DISCUSSION OF THE MODEL

The mathematical elements of the model have, as psychological

referents, the understanding of cognitive categories such as

classes, propositions and numbers. In fact, the present model

is quite close structurally to the Boolean Algebra model to

be presented on the formal stage which involves propositional

analysis on a level deeper than that of the concrete stage.

1) Axiom 1 says that composition exists now for both the

union and intersection operations.

This clearly suggests that this model is applicable only

at a later part of the concrete stage when compared to the

first model, since closure under intersection did not hold

for the latter. Piaget suggests that the union operation (V)

is not closed early in the concrete stage (Piaget, 1957,

p. 28). It is not at all clear what this means or how it can

be tested since he had already indicated his belief that the

union operation is grasped in some sense (Piaget, 1957, p. 27).
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It would seem that the deviation of the latter part of the

concrete stage from complete lattice properties is due to the

fact that the law of absorption is missing. That we are nearing

the complete lattice is indicated by the axiom of distribution,

for distributivity is the major link between :/ and 4 , and

can be understood as a psychological link to the law of

absorption.

2) Associativity, as in the earlier model, states that

the union (as well as the intersection) of classes in a given

order is independent of how they are grouped. The following

experiment might validate this axiom for the earlier model,

as well as the present one.

Consider three large sets of objects, MA, MB, and Mc,

having A, B, and C members respectively. Place MA and MB in

one container, but count them separately and place Mc in a

second container. Now, select three other sets, NA, NB, and

NC, also having A, B, and C members respectively. Place NA

in a third container and NB together with NC in a fourth

cOntainer and count them separately. The child is asked to

compare the two distributions by fi2st asking him to determine

A, B, and C in each distribution separately and then to compare

the numbers of members in MA v MB l/Mc and in NA VNBt/ NC

and to give reasons for his answer.1

3) Distributivity of A with respect to V is a key new

concept distinguishing the P-lattice from the K-lattice. It

1. See chapter five for an analysis of a demonstration
indicating the presence of associativity late in the
concrete stage.
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allows for a limited amount of combinatorial operations

linking two by two or three by three, etc. logical multiplications

but not interrelating them. For example, if A = A1 /A2VA3,

B = B
1
V B2 VB

3'
C = C

1
VC

2 3'
distributivity yields us

A/1B = (A 1AB 1
) V (A

1
/113

2
) V (A1/1 B3) V (A2 /I B1 ) ... etc.

linking pairs of properties but unrelated to triples such as

A1/1 B2 C3. Also A B = (A11131 1c1) V (A1 B1 C2) . . .

v(A3,1133 4C3) which combines triples but doesn't relate to

pairs. This suggests that when this model is appropriate, the

understanding of two (or more) supersets is achieved when

combinations of their subsets in pairs (or triples etc.) is

understood. Plavell cites the following experiment of Piaget,

which illustrates the ability of the older concrete level child

to logically multiply and the inability of the pre-concrete

and young concrete child to do so:

There are only three knives in a store. Two of
these knives have two blades: they cost 8 francs
(A1) and 10 francs (A1'). Two of these knives have
a corkscrew; they cost 10 francs (B1) and 12 francs
(B1'). I choose the one which has two blades and
a corkscrew (A1',1 B1): How much does it cost?
(Flavell, 1963, p. 192)

The concrete child's ability to solve the problem hinges

on his ability to logically multiply, and in this case to

realize that (A1 VA1') x (B1 YB1 ') = A1B1VA1B1' V A1'B1vA1'B1,'

and to consider the solution product A11B1. (Piaget, 1957, p. 30)

It is true, however, that the corkscrew - knife blade

problem could be more properly posed since, for example, it

seems to suggest to the child that a knife with two blades and

a corkscrew could cost less than one with one blade and a

corkscrew. It would be interesting to see, as suggested by
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Dr. P. Merrifield of New York University, how children would

react to corkscrew costs of 8 and 12 francs with two blade

costs of 10 and 12 francs.

Another experiment cited in Flavell to illustrate the

concrete level child's ability to logically multiply in pairs

is the following:

The subject is presented with a horizontal row of
pictures of different colored leaves (A1, A2, A3...)
which meets to form a right angle with a vertical
row of pictures of green-colored objects (BI, B2,
B3...). The subject's problem is to determine what
picture should be placed at the intersect of these
two rows: since the picture is to be in both rows
at once...it must be a picture of a green leaf.
(Flavell, 1963, p. 192)

This experiment suggests that concrete level children

exhibiting the properties of this model are capable of grasping

matrix arrays; e.g., (A1V A2 VA3) A (Bly B2 VB3)

= Al Bl V Al B2 V ... VA3 B3 can be conceived in a 3 by 3

matrix array:

A
1
B
1

A
1
B
2

A
1
B
3

A
2
B
1

A
2
B
2

A
1
B
3

A
3
B
1

A
3
B
2

A
3
B
3

An experiment pursuing this in further depth is a three-

dimensional generalization of the "green leaf" experiment

considering three attributes in a 3 by 3 matrix. The model

suggests that the.added perceptual difficulty should not

preclude the older concrete level child from solving the

problem.

Further development of the distributive law leads to the

consideration of multiplication of relations: if Al<

and B1: B2c.B3... then (A1yA2 VA3...) 4 (B1 B2 1/133...)
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= (All Bl) y (A11132) ... V(A3/ B3) . This proposition involves

a development of two relations and leads to the idea that if

the concrete level child understands the two given relations

he has the ability to grasp the combinatorial matrix formed

by A14 B1, Al /1B2... A34 B3. Flavell cites the following

experiment which illustrates this ability: "The child is

given 49 cut-out pictures of leaves which can be ordered both

by size (7 different sizes) and by shade of color (7 shades

of green). He is asked to arrange them as he thinks they

ought to be arranged, is then questioned about the arrangement

he makes, and so on." (Flavell, 1963, p. 194)

The results indicate that at least 75% of concrete level

children arrange these 49 elements in a matrix according to

their "proper" position in the double ordering but that the

pre-concrete level children do not so order the array.

The following experiment, in a three dimensional matrix,

is analogous to the one involving green leaves and tests the

model further:. consider a number of rectangles whose horizontal

and vertical sides could be ordered by length and whose interiors

are colored by shades of green. The task then is to arrange

them and to discuss the rationale of the arrangement. Of

course, a possible difficulty in those three dimensional

experiments is whether the perceptual difficulties interfere

with cognitive capabilities, and whether the perceptual and

the cognitive capabilities are distinguishable.

Another interesting experiment concerning the achievement

of two by two matrix type reasoning involves the following

card trick: exhibit, face up, twenty-five different cards

4 6



-40-

arranged in five rows of five cards each. Have the subject

mentally choose one and tell the experimenter which row it is

in. The experimenter then picks the cards up row by row and

redistributes them, face up, interchanging corresponding rows

and columns (i.e., each row now is a column and vice versa).

The subject is to specify which row the chosen card is now in,

and the experimenter tells him what the card is.

The subject's task is to determine how the card was

identified and, in effect, to realize that the identification

of both the row and column of an element in the matrix array

suffices to identify the element. In order.to test the verbal

solution it would be efficacious to have the subject then

perform the card trick himself.

The researcher has posed this problem concerning the

card trick to 9 children. Three, who were below 8 years of

age, were mystified and could not cope with any of the posed

tasks. Three, who were between 9 and 10, determined how the

card was identified. One of them could not repeat the trick

himself but the other two did repeat it slowly and after a

while. Three others above age 12 coped with all aspects of

the card trick rather easily.

Another essentially new consideration in the axioms,

besides distribution of 1 with respect toy , involves I,

the universal element, which involves the most general class

under consideration. The existence of I suggests that the

child can conceive of a class with no delimiting attributes.

An experiment validating this might be as follows: have the

child consider a number of different kinds of collections such
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as wooden beads, metal rings, books, etc., and ask him what

they all have in common (i.e., what is I?). An acceptable

answer might be, "They are all collections of objects."

The relationship between the two models involving the

concrete levels, wherein the P-lattice is a logical outgrowth

of the K-lattice, suggests that I will be understood in the

latter part of the concrete stage.

Two theoretical consequences of the model are of interest

here:

Proof: X AI=x/1 (x vx') and (x /1x) V (x = (x 1x) o.

Also (x4 x) V 0 = x tux = x. x = x

b) x/1 0 = 0

Proof of b): (x 40) =

A A
Since (x 4 X) A X = x4 = 0, we conclude that (x/10) = 0.

A question for a child, which tests the grasp of this

result is: what elements do the following sets have in common?

A set of colorless wooden beads (y) a set of various kinds of

beads (x) and a set of blue wooden beads (y'). Theoretically

this yields that yAxily' = xly/i y' = x4 0 = 0 and should be

grasped late in the concrete stage. The point of this theorem

is that, although the child can understand that y and y' have

no elements in common when he directly confronts them, when

x is considered between y and y' and prevents them from being

directly considered the younger child may be confused but the

older child, on the later part of the concrete stage, is usually

not confused by x. He grasps that y/ix4y' = O. A demonstration
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indicating the validity of this result will be described in

Chapter Five.

An important consequence of this P-lattice model is a

theoretical prediction of some of Piaget's conservation studies

(of lengths, areas, volumes, etc.; e.g., see Piaget, et all,

1960, The Child's Conception of Geometry, part 4, and Flavell,

1963, pp. 245-249). Since the idea of numerical order is

grasped early in the concrete stacre, then, if a and b are any

two numbers ae-- b or a = b 'or b (Trichotomy Law) . (This

corresponds to the fact that if A and B are any 2 classes in

a hierarchical series either AC B or A = B or ADB.) In addition,

if two distinct hierarchies are conceived of, then they can

be multiplied in accordance with the Trichotomy Law. That is,

the various logical multiplications involving A's and B's can

be performed and conceived of in order. For example, consider

the horizontal radius (H) and the vertical dimension ( V) of

a glass in a volume conservation experiment; let H1, V1 be

those dimensions of one glass of water and H2, V2 be those

dimensions of another glass of water, both capable of containing

the same volume of water (imagine the water of one glass poured

into the other in the experiment) . With H1<. H2 and V1> V2

being conditions of the experiment, the child must determine

the possibility (which is the actuality) that H12V1 = H22V2.

the model then su4gests that three logical possibilities for

the two volumes (H
1
2V

1
..>H

2
2V

2' H2V
1
= H2V

2' H2 V
1
< H2 V

2
) may1 2 1 2

be intuitively grasped on the latter part of the concrete

level. This is somewhat at variance with Piaget's contention

that conservation of volume occurs at the formal stage (Piaget
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et al, 1960, p. 354). This intuitive understanding of

conservation of volume stems from the Trichotomy Law and lngical

multiplication, however, and not from formal proportions as

in Piaget's analysis (Ibid.). What may be the case is that

conservation of volume is partially a concrete level discovery

but a clear verbal explanation of this by the child does not

occur until the formal stage since it requires proportions.

It may also be the case that conservation of Volume occurs

earlier in discrete cases than in continuous cases (stretching

of plastic). The researcher has conducted brief volume

conservation demonstrations with small groups of children and

these demonstrations tend to substantiate these positions.

Five children about age 10 solved the discrete volume problem

and qualitatively described why the volumes in the two glasses

were the same. They could not give a quantitative solution,

however. It would appear that further experimentation along

these lines might clarify these considerations.

Another interesting result of the second part of the

concrete model involves the inverse of the inverse. This

result concerning reversibility can be stated as: (a') ' = a

Proof: av a' = I, a'V (a')' = I = (a')' V a'.

(also al a' = 0 = a'l (a')').

Therefore (a')' = a since the complement is unique.

We can interpret this to mean the reverse of the reverse

is the original thing and a probing illustration of this can

be found by asking the child: if there is a family of two

brothers A and B, who is the brother of the brother of A? Other

illustrative questions could involve the negation of the negation

of a statement.
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The earlier K-lattice model also yields the theorem (a')'

= a but the psychological interpretation is somewhat different

since (a')' = a would then translate as the partial complement

of the partial complement of a is a. It would then be of

interest to determine when in the concrete stage various

reverse of reverses are grasped. (e.g., in addition to the

above examples one might investigate the negation of a negation

in numbers, the reverse of the reverse of a physical direction

and of mathematical relations.)

5 1



CHAPTER IV

MODELS FOR THE FORMAL STAGE

The two mathematical models just presented serve a double

purpose:

1) They present, from axioriatic considerations, a

mathematical development encoml'assing, enlarging upon, and

questioning Piaget's cogni*:,ive theory op the concrete stage.

The eight groupings of Piaget (Piaget, 1949) may now be under-

stood as exemplifications of the two models.

2) They provide a framework for testing Piaget's view-

point concerning the concrete stage and a theoretical basis

for a number of his most important assertions.

The task of the present part of this paper is to develop

mathematical models for Piaget's formal stage of cognition.

The models develop not only from Piaget's research but from

an under27-, principle motivating his research:

The un&-rstanding of a given stage of cognitive
development can be fully understood only by
relating it to the stage from which it arises; the
seeds for any cognitive stage are present in the
preceding stage. The mathematical models for the
formal stage are thus outgrowths of the mathematical
models of the concrete stage. Further motivation
for the specific nature of the models arises from
fundamental changes in the child's intellectual
development: whereas on the concrete level there
tends to be concern on the child's part for the
actual, before-the-eye reality, on the formal level
the greater tendency on the child's part is toward
the potential, the abstract possibilities of a
situation. (Flavell, 1963, pp. 203, 204)

The concrete level individual tends to develop individual

schemata or organizing structures for conservation of weight,

length, area, etc. at different periods of time, while the
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formal level individual abstracts and generalizes in such a

way that general schemata are developed for many ideas at one

time; this is illustrated when he grasps and articulates the

proportion theory for balancing weights and conserving volume.

Thus, for the formal stage, models are needed which allow

for the consideration of the set of all possibilities of a given

situation and for the transfer of the understanding inherent

in a given situation to the understanding of another, analogous

situation (i.e., transfer of abstract learning). It will be

seen that these needs, as well as others to be discussed, find

a good measure of satisfaction in the following Boolean algebra

and group theoretic models.

Support for the distinctions among the pre-operational,

concrete, and formal stages of cognition is given in the paper

by Gyr, Brown and Cafagna (Gyr, Brown, Cafagna, 1967). They

distinguish between phenotypic behavior (based on the more

concrete aspects of a situation) and genotypic behavior (based

on the abstract possibilities of a situation). They posed a

problem to children, adults, and specially programmed computers.

The problem involved the determination of which sets of switches

in an electric network could activate a given light. A

statistical analysis strongly suggests the existence of the

three levels of cognition. However, it is interesting to

observe that the results of the paper indicate that although

there is a rough correspondence between the three cognitive

levels and Piaget's assertions of the age levels at which they

are attained, there are many individuals whose response to the

problem of the paper belies any rigid correspondence between
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age levels and cognitive stages. This suggests that cognitive

levels should not be thought of as mutually exclusive but

rather as existing in varying amounts at various stages in

people. Furthermore, the paper of Gyr, Brown, and Cafagna,

informal investigations of this researcher, and Piaget's theory

suggest a certain amount of fragility of cognition (Flavell,

1963, pp. 20-23). This means that under stress conditions

there exists a tendency for an individual to revert to earlier

levels of cognition. This is an interesting analogue to the

effect of stress on affective behavior as put forth by

psychoanalytic theory. Further experimentation would seem

quite appropriate, particularly with individuals who have only

recently achieved a particular level of cognitive development.

An experiment along these lines might involve an apparent

violation of conservation of volume after it has been established

at the concrete stage. Ask children, particularly at the end

of the concrete stage and the beginning of the formal stage,

whether volume As conserved when a sugar cube (which, unknown

to them is hollow) is dissolved in water. The point to be

determined is how and when the child gives an appropriate

explanation for the nonconservation of volume which is

discovered by comparing the sugar-water volume before and

after the dissolving of the sugar. Does the child suggest

that the cube is hollow or some equivalent explanation or does

he tend to question whether volume is conserved in general;

i.e., is his grasp of this concept fragile enough to be shaken?

In the following discussion some of the properties of the

mathematical model of the formal stage will be introduced:
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A collection of elements together with two binary

operations denoted by V and A :form a Boolean algebra if,

whenever x, y, z are any three elements, the following axioms

hold:

1) x V y is in the collection CLOSURE OF V and /1
)(4 y is in the collection

2) x i./(y vz) = (xVy) V z

x (17 z) = (x 4 y) 1 z ASSOCIATIVITY of v and /I

3) x /1(y Vz) = (x Ay) V (x z) DISTRIBUTIVITY of /I with
respect to V

4) There exists an element, 0, such that for all x,

x1/0 = x IDENTITY of 1/1

5) There exists an element, I, such that for all x

x VI = I UNIVERSAL ELEMENT

6) x v y = yv x
y = 1,4 x COMMUTATIVITY of 1/ and 4

7) For any x, there exists a unique x' such that

x v x' = I and' x x' = 0 COMPLEMENT

8) xV x = x
x x = x IDEMPOTENT

9) x v (x /ly) = x 4 (x y) = x ABSORPTION

10) x V (y4 z) = (x v (x V z) DISTRIBUTIVITY of 1//with
respect to 4

DISCUSSION OF THE MODEL

The primitive terms of the model may be interpreted as

classes of propositions, and the two operations as representing

unions and intersections (for the class interpretation) or

disjunctions and conjunctions (for the proposition interpretation).

The model is clearly an axiomatic outgrowth of the K and P-
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lattice models of the concrete stage. However, it does not

exhibit the transformation property relevant to the hypothetical

reasoning which an individual on the formal stage can perform.

The mathematics associated with this will be discussed later

in the paper and will involve the mathematics of group theory.

The assumption of the validity of the second distributive

axiom in this model is somewhat speculative. In conjunction

with the others it says that the individuai at this stage can

understand the fundamentals of intuitive set theory. Venn

diagrams provide a clear realization of certain facts of set

theory as well as of the algebra of logic. Therefore,

experimental testing of the axioms may be performed by means

of them (particularly for the distributive laws).

One might, for example, test whether x V (y z)

= (xvy) (xt/z) is understood by presentinej a person with one

collection of red, blue, green, anc white bltcks (x), another

collection of purple, blue, green, and tan bl&cks (y) , and a

third collection of orange, wthite, ciroen, and tan blocks (z).
X

R

,

See the accompanying figure. The question to be raised could

be to compare what is in x or in y and z ((xv (y 7)z) ) with what

is in x or in y and in x or in z ((xvy)A (xl/z)). Anc.,th r

example might be found by considering x, y, and z as members

of the power set of a given set. The power set could be defined

and the understanding of its meaning as well as that of the
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distributive law could be tested.

The problem involving Venn diagrams could be followed up

with the problem of the person's finding the general statement

of the distributive law no matter what kinds of objects are in'

the collections x, y and z.

The Boolean algebra structure has the algebra of propositions

(relative to a given situation) as a specific realization. The

understanding of propositions is then a psychological referent

of the Boolean algebra model. By this we mean the following:

Let us assume that p, q, p (negation of p) , q (negation

of q) are the fundamental propositions involved in a given

situation. Then it can be algebraically demonstrated (Birkhoff

& MacLane, 1965, pp. 321-323) that the six conjunctions, p 4 q,

FAq, pl (71-, pq, pp, ql El-, together with all the possible

disjunctions formed from two or more of these six at a time,

form all the logically possible propositions written in terms

of p, q, p, q. The collection of all such propositions,

(p q) V (f5 4 q) (pA E) V (fi/i (p q) (p /1 ET)

_
P 4q, p4 q, satisfies the axioms of Boolean algebra with

(p 4 q) V (i-D- q) (p A q) V (1:;/) = I and p/1F = (11(7= 0 and

with V , 4 being interpreted as the usual operations of

disjunction and conjunction in logic. As an illustration of

of this let x = q and y = 4ED V (-64E1-) . Some of the

results we can attain, according to the usual rules of logic

are:

1) xvy = (F4 q) V (p4 V (i5/1ED is in the collection

x4 y = (F/1 q) (p 4 ED V (17)- 4 Ei)

= A (14 p/I Zi) V (i5/) q4 Fl Ei) = o, and o is in the

collection since q4 = 0
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2) x V(y vz) = (F4q) [ (p/1 ) t/ (F/1 )]

[ (F4 ci) V (p ] v (13 44) = (x Vy)V z

(Assoc. of V )

3) = (TT /1q) = (F) V = pvq= fp A (q vq-) ] [(71 /1(p V.5) ]

= (P /1(1) V (ID /1(-1-) V /1p) v /IF) = (p /1q) V (p/1 Ti) V (F4 Ti)

which is a member of the collection.

In this way it may be shown that all the axioms of Boolean

algebra are satisfied. Psychologically, this can be interpreted

as meaning that an individual whose cognitive ability is at the

stage indicated by this model can consider and understand all

the logical possibilities inherent in a situation. Another

view of this is that he can count all the possible ways of

combining collections of things; he can do combinatorial

arithmetic. An experiment illustrating the latter view could

involve asking how many nonsense words can be formed from the

word HAIR. Another experiment, illustrating the understanding

of the set of all possibilities in a given situation is

described by Flavell:

The child is given four similar flasks containing
colorless, odorless liquids which are perceptually
identical. We number them: (1) diluted sulphuric
acid; (2) water; (3) oxygenated water; (4) thiosulphate;
we add a bottle (with a dropper) which we will call
g; it contains potassium iodide. It is known that
oxygenated water oxidized potassium iodide in an
acid medium. Thus mixture (1 & 3 & g) will yield a
yellow color. The water is neutral, so that adding
it will not.change the color, whereas the thiosulphate
(4) will bleach the mixture (1 & 3 & g). The
experimenter presents to the subject two glasses,
one containing 1 & 3, the other containing 2. In
front of the subject, he pours several drops of g
in each of the two glasses and notes the different
reactions. Then the subject is asked simply to
reproduce the color yellow, using flasks 1, 2, 3,
4, and g as he wishes. (Flavell, 1963, p. 207)

58



individual, on the other hand, lists all possibilities and

considers them in a hypothetical deductive context. He

considers, "what if" types of suppositions and necessary and

sufficient conditions. He can finally solve the problem by

discovering t. -t mixing 1 & 3 & g is the necessary and sufficient

cause of the color yellow. The route to a solution is intimately

related to the linking of negation or inversion with reciprocity

at the formal level since, for example, if one discovers that

adding substance 4 is important for removing the yellow color

from 1 & 3 & g, and not adding it (using inversion) allows

yellow to remain, one must also consider what other chemical

addition or subtraction effects the same kind of result

(reciprocity) n considering all the other possibilities of

the problem.

Reciprocity entails not the outright elimination
or negation of a factor but its neutralization,
that is, holding its effect constant in some way
while a second factor is being varied. For
instance, where the problem is to study the
separate effects of"kind of metal and length on
the flexibility of a rod, the younger concrete
child finds-himself at an impasse; he cannot
literally negate either variable ... He (the
formal child) takes two rods of different metals
but of the same length (here length is not negated
but neutralized or controlled...) in order to
study the effect of kind of metal, and two rods
of a single metal and different lengths to study
the effect of length. (Flavell, 1963, pp. 209-210)
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Thus, the link between inversion and reciprocity at the

formal stage allows for the greater investigating power inherent

in considering all the possibilities of a situation and the

various ways of achieving the same effect. Inversion,in

Flavell's analysis, woul' ,lorrespond to the child's solving

the problem by completely eliminating metal or flexibility,

which is impossible. He, therefore, solves the problem by

holding one variable fixed and varying the other. This is an

example of reciprocity. The group model, soon to be considered,

further develops this linkage. However, we can see its operation

even within the Boolean algebra framework. Two theorems which

link inversion with reciprocity are:

1) If X2y then there exists an a such that xtia = y

and xA a = 0 (a acts like the relative complement of

the concrete model.)

Proof: There exists an x' such that xl,/x' = I and

xA x' = 0. We will show that y4x' plays the roleiof a.

Now, xV(y /ix') = (x t/y)/1 (x t/x') = y) /11 = xt/Y = Y

(since x)y) . Note that the second distributive law is

needed and used in this proof. Thus, the theorem is a

formal stage property. Also x (y x') = (x A x' ) y

= 0 y = 0 . Therefore a = y x ' .

2) We can now prove from the above theorem that and

yOx --> x = y :

xgy means that there exists an a such that

xk/a = y and x./1 a 0

Also y-ix means that there exists a b such that ytlb = x

and y/1 b = 0.
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Now x 1./y = (y Vb) Vy = (y y) vb = yvb = x and

xvy = x V(x va) = (xVx)v/a = xva = y. Hence, x = y Q.E.D.

Since this latter theorem is a form of reciprocity,' and

it was proved using the partial.complement property which is

a form of inversion,2 we then have a link at this stage between

inversion and reciprocity. (i.e., theoretically, understanding

one of these properties means understanding the other and being

able to consider it at the same time.)

The Boolean algebra aspect of the formal operational stage

model develops the combinatorial mode of thought of this stage

(i.e., consideration of all the logical possibilities of a

situation, the collection of all sets, the separation of sets

into mutually exclusive subsets etc.). However, for fuller

development of abstract, logical thought another aspect of the

formal operation stage model, which deals with the strategies

needed in understanding cause-effect relations and the trans-

formations of a system which leave certain features invariant,

is needed.

Intimately related to these relations and transformations

and to the general development of logical schemata is the

logical notiOn of proportion which is a formal operation

stage concept (Piaget, 1957, Chapter 4). An example

illustrating these aspects of the model (cause-effect reasoning,

use of proportions) can be found when the child learns about

1. since is neutralized but not directly negated by )c-7--!;)y,
leaving the sole possibility that.x = y

2. which involves outright use of negation or complementation
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equilibrium in the simple balance (Inhelder:& Piaget, 1958,

Chapter 11). Not only must the child be able to determine the

various possibilities concerning increasing and decreasing

weights and their distances from the fulcrum on either side

of the balance but he must also be capable of deciding what

transformations will have the same effect (i.e., achieve

balance) . Moreover, he must ultimately realize that the

weights and their distances must achieve appropriate proportions

to achieve equilibrium. Let us consider p = increase the weight

on the left side, F= decrease the weight on the left side,

q = increase the weight's distance on the left side, CY =

decrease the distance on the left side, p', F., q', represent

the analogous statements for the right side. The combinatorial

aspect of the solution to the balance problem involves the

consideration of all the logical possibilities, i.e., the

understanding of the Boolean algebra of all propositions formed

from p, q, p', q' and their negations.
,4

Since the.number of such propositions is 24 (Birkhoff &

MacLane, 1965, pp. 263-265) this would be a formidable task

were it not simplified by the child's ability at the formal

level to consider the proportion relation between p, p' and

q, ql. (The effect of p (increasing the weight on the left

side) is nullified by a proportionate distance increase on

the right side (i.e., by q') or by p' or T.) and vice versa.)

Therefore, the problem may be coped with by considering p, F

q, and c7 alone. The kinds of transformations which are like

q', which nullifies p but not directly and vice versa, have

already been referred to as being reciprocal and are linked
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to the reverse, F, which achieves the same effect albeit

directly. We have then, at this stage, an inter-related

understanding linking the reciprocal, denoted by R, which

nullifies a state of affairs without direct inversion, and

the inverse, denot,ed by N, which directly negates and therefore

a'state of affairs. The solution to the equilibrium
,

.

41w1

problem can npy be approached by considering only p, q, p, q

4 whiCh-sthen yol-ves the.consideration of 16 different possible

.proposa 'Thelaw that the left weight times the
t

left diseance to the fulcrum must be the same as the corresponding
4

Product onrthe right side, can then be suggested by considering
-

h combin7 ations off p, q, p, q achieve equilibrium and which

, and how these combinations are related to p', q', F.,

The fundamental task of this aspect of the formal stage

is to develop means of clarifying the various transformations

to be considered in solving the problem. For a complete analysis

involving p and q, the individual operating on the formal stage

must be able to consider, for example, p t\q, its inverse and

its reciprocal. The INRC (or four-group) proposed by Piaget

(Piaget, 1957, p. 33) yields an abstract system of trans-

formations from which we can develop the desired properties:

let I(p /1q). = p/1 q
.1--

N(png) = p lq =

R (p q ) = F4E1

C(p4q) = pVq

If we interpret I, N, R, and C in the equilibrium problem,

we note that:
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1) I is the identity transformation (the formal mind

can consider increasing weight and distance and then change

nothing) - symbolically, p /1 q___Tp q

2) N is the inverse transformation (increasing both

weight and distance can be considered and then decreasing the

weight or the distance can be considered) - p4

3) R is the reciprocal transformation (decreasing both

weight and distance may be considered and this decrease can

be related to both I and N and C) - p4 qj151 q.

4) C is the correlative transformation (either weight

increase or distance increase may be separately considered) -

p p4 q. C is introduced to generate and complete the

group. It does not arise naturally as do N and R.

There is no suggestion intended here that N or R or C

necessarily produces equilibrium in the system but, rather,

in order for the formal mind to attain equilibrium it must be

able to consider these transformations. (GLT, p. 320), The

protocols cite0 in GLT (chapter eleven) clearly indicate the

presence of thought patterns involving p4 q, Flq = R(pA

in those who solve the weight balancing problem and the lack

of such patterns in the younger child who does not solve the

problem, i.e., N, R, and C are manifested on the formal stage

in an integrated manner and not before.

This latter fact suggests the use of the INRC group (or

four-group) in the mathematical model of the forma] stage as

a means of bridging the gap between the consideration of all

logical possibilities and the specific ones needed in solving

a problem. The abstract definition of the group may be given
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in the following tabular analysis:

I N R C

I C R

R C I N

C R N I

The elements of this group are to be thought of as being

capable of transforming logical statements. This is illustrated

in the weight balancing problem. The individual, at the formal

stage of development (partially characterized by the group),

is mentally capable of considering logical statements, their

reciprocals, inverse, and correlates. Two other realizations

of the group, indicating other considerations available at

the formal stage, are:

1) I(p Vq)

N(p Vq)

R(p /q)

c(p V q)

2) I(p---,q)

N (p

= pl/c4

= rk q = cT

= pilq

= q = iq

= p4

= p4 q = E

= /3-4 q

This latter exemplification of the INRC group as a model

of the formal stage indicates the ability of the formal stage

mind to do hypothetico-deductive thinking, i.e., to consider

the possibilities of a situation and isolate those aspects

which are in cause-effect relation.
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A good example of this kind of reasoning, found on the

formal stage and not before, is found in GLT:

An important example is the principle of inertia.

If the subject wants to demonstrate the conservation

of uniform rectilinear motion in a controlled
experiment, he has to face the fundamental difficulties

that any motion which is created experimentally is

eventually slowed down by external obstacles and

that his observation is limited in space and time.

Thus, the inertial principle has to be deduced and

verified from its implied consequences. Strictly

speaking, it does not give rise to observable
empirical evidence.

However, in relation to the structure of the INRC

oroup of four transformations to which we have
already referred in explanation of the formation

of the notion of equilibrium, the substage III-B
(late concrete stage) subjects do come to discover

an elementary process whose starting point is the

obstacles which would stand in the way of

verification i.e., the causes of loss of motion.

The reasoning which Eollows is extremely simple

but that much more significant. From the fact

that when any object loses motion (stated by p) the

intervention of observable variables is implied

(stated by qvr vs...) , they come to the hypothesis

that in eliminating all of these variables (i.e.,
_
q, r, s...) , all loss of motion would be eliminated

at thesame time; the result would be conservation

of motion (m) with its rate of acceleration.

If p (qvr vs ... ) , then q.r.s . , where

We can see how this reasoning uses, simultaneously,
negation or inversion (N) and contraposition which

is a form of reciprocity (R). (GLT, pp. 328, 329)

Another example, which illustrates the link between N,

R and the group involvements of I, N, R, and C of the faunal

stage, while illustrating the lack of these at the concrete

stage, is found in the example of the snail moving on a plank:

In this experiment, a snail is set in motion on a
plank which can be moved either in the same
direction as the motion of the snail or in the

opposite direction. The subjects at the concrete
level know very well that the snail can move from

left to right, then return from right to left by
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an inverse operation which cancels the preceding.
Likewise, they know that if the snail is immobile
on the plank, moving it from left to right will
cause the snail to end up at the same point (in
relation to an external frame of reference) and
that the opposite motion would return him to his
starting point. But it is not before the level of
formal operations that predictions can be made for
both sorts of motion simultaneously, for in this
case two systems of reference must be coordinated,
one of which is mobile and the other immobile.
The difficulty lies, for example, in understanding
the fact that a movement from left to right made
by the snail can be compensated by a displacement
of the plank from right to left; in this case the
snail remains in the same place (in relaiion to the
[external] frame of reference) without any reverse
movement.

Actually, the difficulty in these problems lies in
distinguishing and combining two types of
transforma-Eion: (1) cancellation (for example, when
the snail returns from B to A after having moved
from A to B) ; and (2) compensation (for example,
when the snail goes from A to B while the plank is
displaced from B to A). Thus the problem involves
the coordination of two systems, each involving a
direct and an inverse operation, but with one of
the systems in a relation of compensation or
symmetry with respect to the other.

Moreover, one can see immediately that this
coordination is the same one that is attained by
the INRC group, since N is the inverse of I, and
C or R, whereas R is symmetrical to or compensates
I (reciprocity). So the problem is to distinguish
inversion N from reciprocity R at the same time
that one is coordinating them. This is why the
problem cannot be solved before the formal level,
when a schema based on the INRC group is in
operation.

In other words, if we call I the snail's motion
from A to B, N will be motion from B to A; R
will be the plank's motim from B to A (thus R = C of N)
and C will be the plank motion from A to B
(thus C of I = N of R). (Inhelder and Piaget,
1958, pp. 318, 319)

Although the analysis properly distinguished the concrete

and formal level approaches to the problem as well as the

linkage between inversion and reciprocity, the mathematical
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analysis is unclear and/or wrong. For example, I does not

operate as the identity element since IN / N. In fact IN is

not one of the listed transformations since the snail remains

fixed under IN.

A more appropriate analysis would be:

Let p = the snail moves from A to B

p = the snail moves from B to A

q = the plank6moves from A to B

= the plank moves from B to A

Then, if we let I(p)

R(p)

N(p)

=

=

=

with similar definitions

for I (q) , R(q) , I (F) , etc.

C(p) =

We see that I, N, R, and C satisfy all the four-group properties.

For example, IR(p) = I(Ei) = al:- and NC(p) = N(q) = q, which

indicates that IR = NC. An important difficulty for the concrete

stage which is mastered on the formal stage is that p and El-

give the same result as p and q. In other words the snail

moving from A to B while the plank moves from B to A (p/lCi)

results in no relative motion of the snail (equilibrium). On

the other hand, the snail moving from B to A while the plank

moves from A to B (-15-/)q) also results in equilibrium. Therefore,

since the results of pt\CT and Filq are the same they are

operationally the same.

Further investigation of the group's table shows that

it is commutative (i.e., if x and y are elements xy = yx).

This is made clear by noting the symmetry of elements on either

side of the diagonaln of I's. On a psychological level this

6 8



-62-

suggests a symmetry principle operating on the formal stage.

Since the INRC transformations of thought exhibit this

symmetry property, an interesting speculation is whether a

search for symmetry operates in.other ways on the formal level.

For example, the solution of the balance problem shows symmetry

considerations when what occurs on the left side is thought

to be symmetric to what can occur on the right side. An

analysis of concrete and formal children (and adults) when

faced with the problem of relating size and distance of

objects and images formed in a mirror might further test this

symmetry principle. The problem to be posed might be to

measure the size of and distance between several objects by

only using their mirror images and not the objects themselves.

Another problem could be to have an individual draw a given

map as it would appear in a mirror. The suggestion is that

symmetry would be involved and simplify the problem for formal

minds but not for concrete minds. A further test might be

the comprehension or fashioning of a "proof" that the base

angles of an isosceles triangle are equal by symmetry

considerations (consider the upper vertex angle bisected by

a plane mirror). When appropriate, one should have the

subjects only consider the mirror image and not the original

objects.

The final aspect of the INRC group to be considered in

this paper relates to the theory of logical proportions and

its consequent analogic development and use in a theor: of

numerical proportion. Following Piaget's general approach

(Piaget, 1957, pp. 35-37) but with a modified use of his
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mathematics let us consider x, y, z, and w as arbitrary

elements in the INRC group:

1) x/y = z/w will mean that xw = yz in the group. For

example, since IN = RC I/R = C/N and I/C = R/N etc.

2) if p, q, r, s are propositions such that there exists

a proposition t where x/y = z/w and

x (t) = p
y (t) = q
z (t) = r
w (t) = s

Then we will say that p/q = r/s (i.e., if p, q, r, s can be

made to "correspond" to x, y, z, w then if the latter are in

proportion so are the former).

For example, since I/R = C/N and

I (p V q) = p q

R (p = FVFI

N (pvq) = p q

C (p V q) = p/1 q

we have that

p V q

f5. VCT

Since another realization of the INRC group is gotten by

considering I (p) = p

N (p) =

R (p) =

C (p) = q etc., as in the

snail on the plank problem, we now have, using I/C = R/N, that

p/q = Fi/F. Let us define thesy roporitions to be in accord

with the following and thereby use the theory of logical

proportions to stimulate the theory of nu-lerical proportions:

p = multiply x by a factor of n (nx)

= multiply 1 by a factor of n (n:x)
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q = multiply y by a factor of n (ny)

= multiply 1 by a factor of n (n:y)

We then have the analogous results from the logical pro-

portions that nx/ny = n:y/n:x for all n and if ab = cd then

a/c = d/b (where a - nx, b = n:x, c = ny, d = n:y) , which are

fundamental properties of the theory of numerical proportions.

The importance of this result lies not in the fact that at this

level the child can handle ratios. In fact he is capable of

such things earlier in the concrete stage. However, he can

now consider the collection of all ratios which are equal. He

can grasp therefore the general proportional analysis needed

to fully solve the conservation of volume problem, equilibrium

of the balance problem etc. (i.e., all those problems requiring

a theory of proportions and a propositional analysis to

elucidate them). In terms of the conservation of volume

problem he can now not only operate concretely to guess at

volume conservation but he can anticipate the use of proportions

in justifying (proving) the conservation. A direct empirical

test of the position that only at the formal stage can a general

theory of proportions and the collection of equal ratios be

grasped could be to ask the child to characterize all fractions

equal to, say, one half. The theoretical prediction would be

that individuals- on the concrete stage would only specify a

number of equal forms and individuals on the formal stage would

yield a general approach for all fractions equal to one half --

perhaps scmething like the numerator should equal half the

denominavor and/or the product of the means equals the product
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of the extremes. Of course a difficulty introduced at this

stage is the effect of previous learning (in school) on the

general understanding of ratio and proportion. However, it

may be that "learning" these things in school at a true concrete

level may prove to be fragile and deeper questioning may

indicate whether, in fact, learning or mere memorization has

occured. (Unpublished research of Dr. Edward Henderson of

New York University suggests the latter.)

Such experimentation might be carried out in unschooled

populations or Llsing children and adults who have had little

schooling. One might "teach" a concrete level group fractions

and proportions and compare their understanding of these ideas

when they attain the formal stage to that of another formal

stage group which is unschooled in fractions and proportions.



CHAPTER V

DEMONSTRATIONS AND CLARIFICATIONS

CONCERNING THE MODELS

Although the research which has been presented was

essentially geared to developing the mathematical models of

Piaget's theory, a number of demonstrations suggesting the

validity of the models were discussed in Chapters three and

four. In this chapter, more demonstrations, which further

suggest the validity of the models, will be discussed. It

should be emphasized that these are not full scale experiments.

Such experiments are not within the purview of the present,

theoretical research. The researcher, however, hopes to engage

in such experiments in the future. An additional aspect of

this chapter will be a clarification of a number of important

results of this research.

The first demonstration is concerned with the experimental

generalization of Piaget's bead experiment (below p. 28). It

was structured as follows:

Consider a collection of 21 small pieces of paper (z) ,

most of which (15) are square (y) and few of which (6) are

round (y'). Color 12 of the squares white (x) and the other

3 gray (x'). Color 3 round pieces white and 3 round pieces

gray. Since xt/x' = y and yi/yl = z and, logically speaking,

both x' and x'V y' function as partial complements (relative

to different universes) for x, one could ask the following

questions of a child:
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1) Are there more paper scluares than white paper squares

(and why)? (also vice versa).

2) Are there more pieces of paper than white paper

squares (and why)? (also vice versa)

The K-lattice model suggests that early in Lhe concrete

stage only one of the questions would be afEirmatively coped

with (p. 29).

All the demonstrations cited in this chapter were carried

out with school children in Marblehead, Massachusetts. Three

groups each containing six children were used. The first group

were in first grade and six years old. The second group were

in second grade and seven years old. The third group were in

fourth grade and nine years old. All the children were

economically from middle class to upper middle class families.

From prior experiences and tests in their classrooms the

researcher concluded that the three groups were on the stages

indicated in the following discussion. That is, essentially,

the first group was on the pre-concrete stage, the second was

on the border line between concrete and pre-concrete and the

third group was on the concrete stage.

The first group all responded in the manner of the pre-

concrete stage. The typical answers were, "There are more

white squares than paper squares because there are more white

squares than gray squares" and "There are more white paper

squares than pieces of paper because there are more whites

than grays".

The second group had an interesting range of responses.

Two responded as the first group did. Three responded in a
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mixed manner. Two of these said that there were more white

paper _squares than pieces of paper but that there were more

paper squares than white paper squares. The third, however,

asserted there were more pieces .of paper than white paper squares

but there were more white paper squares than paper squares. The

sixth answered both questions "properly", as a late concrete

stage child would..

The third and oldest group all responded in the "proper"

manner to both questions although three of them showed distinct

hesitation. However after one question was answered the other

was always answered spontaneously and "properly".

Although this demonstration is not a fully valid experiment

it does suggest the validity of the prediction of the K-lattice

concerning these questions. A proper experiment should not

only include a greater number of children but other tests to

determine whether or not a given child is on the concrete stage.

The second demonstration concerned the asymmetry property

implied by the K-lattice:

ae6 and b a = b

The model suggests that pre-concrete children do not, and

concrete children do, grasp this idea. The procedure involved

comparing the number of marbles in one bag (a) to an equal

number of marbles in the researcher's hand (b), The child,

unaware of the relative number of marbles, paired off marbles

he took from the bag, with marbles the researcher gave him one

at a time from his closed hand. When the marbles in the bag

were used up (i.e., a0b) the researcher (who did not at any

time disclose what remained in his closed hand) interchanged
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the original marbles of the bag and the hand and told this to

the child. The corresponding matching ensued until the marbles

of the bag were used up again (i.e., b ). The child was then

asked to compare the amount of marbles originally in the bag

and in the hand. None of the first graders realized a = b.

Three of the second graders realized a = b and three of them

did not. Two of the latter also gave pre-concrete answers

to both questions of the first demonstration. (It would appear

that they were not yet on the concrete level). The fourth

graders had no trouble realizing that a = b. The suggestion

of this demonstration is that understanding of the asymmetry

property is achieved at the concrete operational stage and not

before.

The third demonstration tested when the idea X40 = 0 is

understood. The P-lattice model suggests that this occurs

late in the concrete stage (p41)- The children were shown

three different sets of five checkers each; one set was made

up only of red .checkers (y) , another set had 3 red and 2 black

checkers (x), the third set had 5 black checkers (y'). They

were then asked, "Is there a color of checkers which is the

same in all three bunches of checkers?" The first group

contained two children who first oscillated back and forth among

the groups of checkers and finally answered, "No, the blacks

are in there and not there and the reds are here but not here."

The other four didn't answer the question."properly". They

either said they didn't know or that the answer was, "Yes."

The second group contained three children who oscillated at

first and then said, "No." The other three went back and forth
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among the checkers and either answered, "YLs" or "I don't know".

".1 of the third group quickly answered, .No." The results

are somewhat ambiguous and fear further investigation with

larger numbers of children, since some apparently early concrete

stage children appear to grasp the idea x/10 = 0.

The fourth demonstration was concerned with the associative

law for the P-lattice model. In this case only groups one and

three were used. Three cans containing 14, 19, 26 marbles each

were used. The first two were kept close together, separated

by a foot -rom the third. The children were asked to record

the number in the first two separately and together and then

the third separately. They were then asked to put the second

and third close together separated from the first. They were

then asked to record the number in the first and the number

in the second and third both separately and together. They

were then askc . to compare the two totals. Several older

children of the third group started to add the numbers in each

computation but.were cautioned not to and did not complete the

addition. The first group could not compare the two results.

The third group, without any apparent addition, contained five

who answered that the number of marbles was the same both times

because, "It didn't matter how you add them up". The sixth

member of the

they were the

demonstration

stage and not

group hesitated for a while and

sarne. Before accepting the suggestion of this

that associativity Ls understood on the concrete

before one should test the effect of schooling

on this concept and whether it is genuinely understood or is

accepted as dogma. It would be worth while investigating
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unschooled children and adults in this regard.

The remainder of this chapter will constitute a clarification

of some of the important results of chapters three, four and

five.

It is of some interest that the first theoretical result

concerning the bead experiment (cited after the K-lattice) was

quite serendipitous. The researcher did not consider it at

all in forming the axioms of the K-lattice. It is quite

striking, therefore, that one of the important ways whereby

Piaget characterizes reasoning on the concrete stage arose

quite naturally from the first model presented in the research.

The mathematical theorem X VX' = Y = Y (i.e., x5119y)

was interpreted as meaning, psychologically, that if one

understands that a given sub-class and its complement make up

a larger class then, at the same time, one understands that

the sub-class is smaller than the given class. This result

also pointed the way (together with the first axiom of the

K-lattice concerning the incompleteness of the 4 operation)

to the development of the first demonstration of this chapter.

Another important result involves a mathematical rendering

of Piaget's notion of reciprocity on the concrete stage:

NDY and Y6DX --7>X = Y

Reciprocity is exemplified here as the achieving of

balance (X = Y) not directly by: negating the pcssibility of

imbalance but ildirectly by offsetting XOY by YOX thereby

leaving the sole possibility that X = Y. (This result was

instrumental ;_ n developing the second demonstrati A of this

chapter) . This form of reciprocity is the precursor of the
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reciprocity which appears on the formal stage. At this latter

stage, understanding reciprocity becomes linked with under-

standing inversion. This is indicated both mathematically

and empirically in the analyses of the chemical combinations

experiment and the snail experiment of chapter four. The

mathematical theorem

NOY and YeDX==,SX = Y

is shown to be valid in the Boolean algebra model and the deep

link between inversion and reciprocity is established in the

analysis of inertia and the INRC model in chapter four.

The use of the Boolean algebra, K-lattice, and P-lattice

models constitutes the first time, as far as the researcher

knows, that a sound mathematical base was given to Piaget's

theory of cognition. As was indicated earlier in the research

(particularly in chapter two) , Piaget himself does not provide

such a base for his theory. His mathematics is often unclear

and his axiomatic basis is not mathematically sound.

Let us now compare the theory and results of the

demonstrations of chapter five with what could be expected of

Piaget's own theory in this regard. The first demonstration

is based on axiom 1 of the K-lattice (p. 25) and the theorem

derived from the K-lattice on page 28 (if xV x' = y then N(3Y).

In other words the present research,,based upon the incompleteness

of the intersection operation of sets early in the concrete

stage and an extension of Piaget's bead experiment (p. 28), led

to the first demonstration. The only reference that Piaget

makes to the incompleteness of the intersection operation is

in his discussion on the multiplicative grouping (Piaget,
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Logic and Psychology, p. 28). The incompleteness of intersection

does not allow for a full development of multiplication of

classes and relations early in the concrete stage. However,

he makes no explicit use of this incompleteness nor is it ever

mentioned subsequently in his writings as far as the researcher

could determine. It would appear then that he might not at all

raise the questions which the K-lattice model poses in this

regard.

The second demonstration stemming from the K-lattice in-

volves reciprocity with operations of relations on the concrete

stage ( b and b(=_)a - a = b).

Piaget makes clear reference to this form of reciprocity

(Piaget, Logic and Psychology, p. 29). He does not however

suggest an experiment similar to the one in this research in

order to verify it. Flavell's analysis of asymmetric relations

suggests that Piaget's procedure for the second demonstration

would be very similar to that found in this research (Flavell,

1963, pp. 193-.195). What is new in this research in this

regard is that Piaget states the reciprocity condition while

this research derives it as a consequence of the K-lattice

model.

The third demonstration involved a subtle point. If one

assumes that children can perceptually determine that sets y

(red checkers) and y' (black'checkers) have no common elements

( i.e., y4 y' 0) then what conclusion do children reach who

much mentally juxtapose y, y', and x (the mixture of black

and red checkers)? In other wor-ls the question is not whether

y4 y' = 0 but given that y Ay' = 0 to determine whether
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x 4 (y4 y') = 0 Piaget has never raised a question like this

as far as the researcher could determine. His models do not

explicitly lead to such a question b t they are quite

consonant with such a view. He.does make reference to the

intersection of mutually exclusive classes (Piaget, Logic

and Psychology, p. 127), but he does not pursue it further

in this direction.

The fourth demonstration cited in this chapter is

anticipated by Piaget in his first model based on simple

classification (Piaget, Logic and Psychology, p. 27). He

speaks of the incompleteness of associativity early in the

concrete stage and thereby suggests that the psychological

structuring of associativity is attained later on (presumably

in the concrete stage) . However, although he refers many times

in his research to additive and multiplicative composition of

classes, particularly in The Child's Conception of Number

he cites no experiments relating to associativity (Piaget,

1952, chapters .7 and 8). The demonstrations cited in this

chapter, then, are outgrowths of the models presented in this

research and appear to indicate extensions of Piaget's theory.

However, they do not appear in the body of Piagetian research

so far as the researcher could determine.
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CHAPTER VI

DISCUSSION AND SUMMARY

The models, demonstrations, and experiments which have

been discussed in the previous five chapters indicate the

validity of the hypotheses put forth at the start of the

research. This does not mean that all aspects of the models

have been found to be valid. However, some axioms and some

of their consequences have been translated into psychological

terms and some of Piaget's important experiments, as well a6

the researcher's demonstrations, have been shown to be

consonant with predicted results. Further investigation,

moreover, involving experiments suggested by the research and

the demonstrations, is needed to determine the validity of all

aspects of the models. The research, then, does bolster

Piaget's view that logical structures can be used to facilitate

our ur'---standing of the intellectual development of the child,

the au. _scent and even the adult (Piaget, 1957, p. 48) . The

use of logical structures in describing nerve networks and in

cybernetics gives further credence to his point of view.

Several further points of view which the research poses

are: 1) Since the INRC group analyzes propositions as constant

with respect to time, can a structural analysis involving

propositions which vary with time subsume the results of the

INRC group? (See Apostel, 1966). Leo Apostel suggests that

the model for the formal stage is too static and that considera-

tion of propositions as functions of time may yield mathematical

structures which correspond more closely with cognitive
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capabilities. This would appear to be a promising line of

research which might enlarge upon the model this research

presents for the formal stage.

The static model could be useful for studying individual

differences on the concrete and formal stages. It is noteworthy

that Piaget has not concerned himself with such problems. It

would certainly seem appropriate for developmental studies

that time be considered an important variable.

2) Can the model of the formal operational stage represent

the culmination of abstract thought, since the mathematical

understanding of the INRC group as well as of group theory in

general would suggest more complex structures for a model

characterizing such cognitions? Further research might

properly consider different models for the cognitions of

,mathematicians, logicians, etc. Perhaps the time dependent

models, referred to in 1) above, could be used to characterize

the more complex bognitions of theoretical scientists.

3) Since Piaget's theory, including both psychological and

mathematical aE.)ects, is one concerning the nature of intelligence,

it is appropriate to inquire whether it provides a natural form

to test intelligence. Indeed, it would seem that its concern

with the structures of the intellect renders it much more

appropriate as an intelligence measuring device than are

statistically based, middle ,..iass oriented intelligence tests.

The fundamental involvement with the operational as well as

the verbal components of intelligence might tend to render it

free of cultural biases. Implementation of Piaget's theory

in defining and estimating intelligence would seem to be highly
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desirable. The work of Guilford j:3 illuminating in this

respect. He has developed a "structure of intellect" theci'y

which can fill in the interstices of Piaget's theory. He

suggests specific categories involving figural, symbolic, and

semantic meanings which can provide detailed examples for

characterizing the several stages of Piaget's theory and

thereby yield further understanding of what intelligence mea

(Guilford, 19E7 - particularly Chapter 9).

4) If the theoretical predictions of th-^ are.empirically

verified, then Piaget's cognitive thec- ALd be more firmly

established. The confirmation of this theory which concerns

the nature of intelligence, knowledge, teaching, and learning

should, it would seem, eventuate in a significant restructuring

of the educational process, emphasizing the structural develop-

ment of intelligence, the relative need for student independence

in learning how to learn (e.g., developing strategies for

learning) and the need for independent, knowledgeable teachers

whose crea;Live function involves realizing crucial junctures

when it wnuld be appropriate for them to gently elicit responses

and understanding from the student. For example, if a child

about age twelve experiences great difficulty in understanding

the converse of an implication, it might be appropriate to

direct him to understanding analogues to it (in the equilibrium

of the balance experiment or in a Venn diagram analysis of sets).

5) The fragility of cognitive structures and their possible

dissolution under stress, particularly at the beginning of

their acquisition in a given stage, suggests the co-existence

of various structures in varying amounts at each stage of Piaget's

8 4
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theory. This is strikingly similar to the psychoanalytic

theory of regression in times of psychic stress. It 6.lso

suggests the appropriateness of determining the kinds and the

distributions of cognitive structures exhibited by adults.

There seems to be an implicit assumption in Piaget'E research

that most adults achieve the formal stage of cognition. This

assumption should be open to further investigation.

6) What is the nature of the concept of number? The view of

intuitionist mathematicians is that the whole numbers are

intuitively conceived ann constructed before logic and

mathematics can be developed. The logicians view logic as

being prior to the development of number with cardinality and

order as separate concepts. From a Piagetian point of view

both philosophies have the major difficulty that if one wants

to understand the fundamental nature of mathematics and its

relation to man'F mind, one must understand how cognitions

develop; i.e., one must have a psychology which directs one's

philosophy. Both the logician's and the intuitionist's views

lack psychological structure concerning when and how number

is understood and what is meant by uncrstandng it. The

Piaget view places number understand1,1g at the beginning of

the concrete s.tage and uses the concept of reversibility (as

in the bead counting experiment) to define it: one understands

a given number when one understands what it is not; the concept

of number is conserved (is kept intact under psychological and

physical transformations) and understood when cardinality and

ordinality are both grasped early in the concrete stage. Thus

the intuitionist view that the whole number concept is prior

8 5
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to formal logic is affirmed by Piaget. Although the logician's

view that cardinality and ordinality are separate concepts is

logically acceptable, it is not psychologically tenable in

Piaget's theory. In other words they are not learned

independently although they are separate concepts (Flavell,

1963, p. 311). This theory also opens questions concernig

the law of the excluded middle (which is only acceptable to

the intuitionist view when a finite number of possibilities

are being dealt with but not with an infinite number of

por,qibilities) since formal, logical reasoning occurs

psychologically with the ability to transform a finite number

of statements. (The law of the excluded middle states that

either a statement or its negation is true but not both.) This

suggescs that the excluded middle operates "naturally" in the

finite case. However, how is one to understand whether it

operates "naturally" with a large number of cases? Is this

tantamusdnt, from the psychological point of view, to an

infinite number of cases? Further research along these lines

could answer questions concerning the psychological validity

of the intuitionist viewpoint.



APPENDIX

PIAGET'S THEORY OF STAGE3

There are four main stages in the child's life according

to Piaget's developmental theory of cognition (Piaget, 1957,

chapter 2):

1) The first stage, the sensori-motor period, takes

place during the first two yers of the child's life (age

categories throughout his theory are approximate and not to

be considered too rigidly). This stage is characterized by

motor actions displaying the beginnings of intelligence. The

child will act in ways to bring about desired effects but does

not internalize his actions in representational form. The

ld does exhibit activity which indicates that he forms

,ps or schema of his sensory world and uses them (e.g., he,

can finft an object hidden under a blanket by drawing the blanket

off the object).

During the first stage the child achieves the idea of

the permanence of an object. He cc7Jes to understand that even

whim an object is not in his immediate sensory field that it

exists. Early in this stage objects are not considered

as , lanent; e.g., "when a watcil is covered with a handker-

chief he chijd, in.4tead of lifting the handkerchief,-withdraws

his hand" (Piage.t, 1'357, pp. 9, 10). The growth of intelligence

d,ring this stage relt fro7; the c:Old's activities in

conjunctian with the development rf innate psychological

structus. Trui. ciild is capable of moving and returning td

his start:.ng point (incipient reve.rsibility) and holding onto

8 7
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the idea of a permanent object independent of change

(conservation). The concepts of reversibility and conservation

play important rolr.1 in the further development of intelligence

and the models co .1cted to understand it.

2) The se,7nn, -Aage takes place from about age 2 to about

age 7. Languac,,, sTmbolic play, and internalized representations

are important aspects of this stage. The child relates his

immediate environment to past occurrences. He tells stories

and draws pictures but is unable to represent things pr-c:isely

in thought or picture. He has difficulty with being mentally

precise in relation to his environment; e.g., he has difficulty

reproducing a remembered picture of a room or drawing the room

from another point of view. He does not conserve ideas of

amount or number; e.g., w7len he pours liquid from one container':

into another of a different shape, he i.elieVes the amount of

liquid changes in the process and when two sets of objects

which are equal in number are presented in different perceptual

configurations, he believes they are unequal in number. His

ability to conserve (grasp the sameness of an,idea under

changing circumstances) and to reverse things internally (e.g.

see things from other points of view), is similar to that of

the on the first stage. Logical operations tend to be

absent; ie., the child does not yet exhibit structures of

reasoning (such as those the next stage) which operate

reversibly and are used to solve problems di_zcussed in the

next stage (Piaget, 1957, pp. 10-13).

3) The third Stage is characterized by concrete reasoning

and takes place during the ages of approximately 7 tc .1.1. The
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logical structul . the child focus on the objects of his

experience. He is capable of reversibility and conservation

in this regard. He can see things from various points of

view. During this stage he conserves quantity, weight, volume,

length, number, area and much more. He recognizes the

invariance of the volume of liquid when he pours it from one

container to another; he grasps the idea of the invariance of

number in different perceptual configurations; he understands

relations among objects and people (e.g., order in sizes and

familial relations). If he is presented with a series of

sticks of varying lengths, he can position them according to

size and properly position a new stick in the series. Stage

two children cannot solve this kind of problem. Stage three

is characterized by continually increasing co:lpetence in

concrete reasoning 6.nd in the use of reversibility and

conservation in the direct experience of the child. The child,

however, lacks th owe.,!:5 generalization, abstract reasoning,

and propositional analysL; ich are found on the fourth stage

(Piaget, 1957, pp.

Stage four is characteri:ed by a marked incidence of

hypothetico-deductive reasoning. It takes place

dur...;_r) 4.1.1e ages of approximately 11 to 15. The child at this

stage exhibits systematic 77easoning and develops general

strategies fr)r solving problems. "For example, when they are

given a pendulum and allowed to vary the length and amplitude

of its oscillations, .,. subjects of 8 to 12 years simply vary

the factors in a haphazard way .... Subjects of 12 to 15 years,

on the other hand, endeavor after a few tkials to formulate

8 9
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all the possible hypotheses concernina t opr-:ative factors

and then arrange their experiments as a function of these

factors." (Piaget, 1957, p. 19).

The stage four child can solve problems concerning ways

of combining and arranging objects. When faced with the

problem_of determining which of five colorless and odorless

liquids combine to yield a colored product, the stage four

child systematically tries all possible combinations, while

the stage three child utilizes a haphazard, unsystematic

approach (Piaget, 1957, p. 21). At stage four the idea of

proportions is understood. This is exemplified by the child's

approach to many different col_cepts: weight-balancing,

probability and similarity of triangles. For example, in

discovering the role of weight times distance in the equilibrium

of the balance problem the child considers proportions betwe'a

weights and distances (Inhelder and Piaget, :1.958, chapter 11).

At this stage the child utilizes logical constructions

such as implication, disjunction, conjunction etc. These

manifest themselves in his use of causo-effect reasoning,

in the solutio; of the chemical combinations problel-, and in

the solution t. the problem of how to achieve c,uilibrium with

a balance (many such examples can be found in Inhelder and

Piaget, 1958)
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